Coloring the cliques of line graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloring the cliques of line graphs

The weak chromatic number , or clique chromatic number (CCHN) of a graph is the minimum number of colors in a vertex coloring, such that every maximal clique gets at least two colors. The weak chromatic index , or clique chromatic index (CCHI) of a graph is the CCHN of its line graph. Most of the results here are upper bounds for the CCHI, as functions of some other graph parameters, and contra...

متن کامل

Coloring quasi-line graphs

A graph G is a quasi-line graph if for every vertex v, the set of neighbors of v can be expressed as the union of two cliques. The class of quasi-line graphs is a proper superset of the class of line graphs. A theorem of Shannon’s implies that if G is a line graph then it can be properly colored using no more than 32ω(G) colors, where ω(G) is the size of the largest clique in G. In this paper w...

متن کامل

On-Line Coloring of Oriented Graphs

A graph coloring algorithm that immediatly colors the vertices taken from a list without looking ahead or changing colors already assigned is called an one-line coloring algorithmm. We study in this paper on-line oriented coloring algorithms. Firstly, we investigate the First-Fit algorithm and we try to characterize the F F-optimall graphs that is the graphs for which there exists a linear orde...

متن کامل

On-line P-coloring of graphs

For a given induced hereditary property P, a P-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property P. We consider the effectiveness of on-line P-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound fo...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.11.011